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1  |  INTRODUCTION

Voltage- gated calcium channels (VGCC) form a class of transmem-
brane proteins with a main pore forming α- subunit which is com-
prised of 4 domains, each containing 6 transmembrane segments. 
Historically, different channels have been named according to their 
electrophysiological properties and sensitivity to blockers. A total 
of 10 α- subunits of VGCCs can be found in the human genome, 
forming subfamilies of the high voltage- activated long- lasting, L- 
type CaV1.X VGCCs, the high and intermediate voltage- activated 
CaV2.x VGCC with P/Q- , N- , R- type current conducting channels, or 
the low- voltage- activated, transient- current (T- type) CaV3.x chan-
nels. CaV1.x and CaV2.x channels assemble into multi- subunit com-
plexes comprising also β- , α2δ -  and γ- subunits beside the channel's 
main α - subunit in a 1:1:1:1 ratio (Figure 1) (Takahashi et al., 1987; 
Müller et al., 2010). T- type VGCCs do not depend on additional 
subunits to produce current, but their gating characteristics may 
be influenced by these auxiliary subunits (Dolphin et al., 1999; Gao 

et al., 2000; Lacinová & Klugbauer, 2004; Lambert et al., 1997; 
Leuranguer et al., 1998; see also review by Zamponi et al., 2015). β- 
Subunits are intracellular proteins that enhance calcium currents by 
increasing the membrane expression and facilitating the open state 
of the channel (Bichet et al., 2000; Williams et al., 1994; Yasuda 
et al., 2004). α2δ- Subunits are post- translationally cleaved and re-
joined by a disulphide bond and further promote currents through 
calcium channels (Hobom et al., 2000; Yasuda et al., 2004). Both 
β-  and α2δ- subunits show distinct expression patterns and do not 
assemble with specific α- subunits (Hobom et al., 2000; Ludwig 
et al., 1997; Yasuda et al., 2004). The association of γ- subunits with 
the channel complex is uncertain, with differences between the 
individual subtypes, whereas their function in the trafficking of 
AMPA receptors is more clear (see review Chen et al., 2007). The 
channel complex is embedded in a rich nano- environment of mostly 
calcium- binding proteins serving to directly translate an elevation in 
intracellular calcium to downstream pathways (Müller et al., 2010). 
In comparison to other voltage- gated ion channels, VGCCs take a 
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2  |    LAUERER and LERCHE

special role, as the conducted ions render them directly linked to 
downstream effects beyond their contribution to electrophysio-
logical processes such as exocytosis of neurotransmitters, altered 
transcription, excitotoxicity and apoptosis (Bucurenciu et al., 2010; 
Cano- Abad et al., 2001; Hardingham et al., 1997; Li et al., 2016; 
Stanika et al., 2012; Stanley, 1993). Furthermore, the expression of 
VGCCs is not limited to neurons and they can also be found in glia 
cells (D'Ascenzo et al., 2004).

In recent years, all VGCC α- subunits and a progressing number of 
auxiliary subunits expressed in the brain have been associated with 
epilepsy (Table 1). This review will give an overview of the channel 
family and the associated epileptic and some other phenotypes.

2  |  L-TYPECALCIUMCHANNELS(CaV1 .x)

L- type calcium channels are long- lasting, high- voltage activated 
VGCCs. They are widely expressed in the body with subunit- 
specific distinct expression patterns. CACNA1S, encoding CaV1.1, 
is mainly expressed in skeletal muscle and is not expressed in the 
central nervous system (CNS) to a significant amount (Sinnegger- 
Brauns et al., 2009; https://www.prote inatl as.org/ENSG0 00000 
81248 - CACNA1S;Uhlén et al., 2015). CACNA1F/CaV1.4 expression 

is most distinct but not limited to the retina (Doering et al., 2014; 
Strom et al., 1998). Apart from other tissues, there is some expres-
sion in the spinal cord and in the pineal gland (Doering et al., 2014; 
Hemara- Wahanui et al., 2005; McRory et al., 2004; Sinnegger- 
Brauns et al., 2009). Only CACNA1C/CaV1.2 and CACNA1D/CaV1.3 
are significantly expressed in the brain with a variable predominance 
in different species between the two subunits (Hell et al., 1993; 
Sinnegger- Brauns et al., 2009; Splawski et al., 2004). Both CaV1.2 
and CaV1.3 are expressed postsynaptically in clusters in dendritic 
spines and the soma of glutamatergic and GABAergic cells (Di 
Biase et al., 2008; Hell et al., 1993; Jenkins et al., 2010; Obermair 
et al., 2004). Although only detected sparsely, there is also evidence 
of expression in the axon for both subunits (Obermair et al., 2004; 
Tippens et al., 2008). Both are also expressed in astrocytes, where 
CaV1.2 channels serve an important role in astrocytic activation and 
astrogliosis (Cheli et al., 2016; Tippens et al., 2008).

Missense variants in CACNA1C, encoding CaV1.2, had been first 
established in cardiac arrhythmias, such as Long- QT syndrome 
(Boczek et al., 2013; Fukuyama et al., 2014) and Timothy syndrome, 
a severe multisystem disorder that among other symptoms includes 
cardiac arrhythmia, syndactyly, developmental delay and occasion-
ally seizures (Boczek et al., 2015; Splawski et al., 2004, 2005). More 
recently, variants in this gene have been described in patients with 

F IGURE 1 The calcium channel complex. Genes with a clear association with epilepsy are underlined. Genes with disputed disease 
association are underlined with dotted lines. Created with BioRe nder.com.
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    | 3LAUERER and LERCHE

a leading neurodevelopmental syndrome consisting of neonatal 
onset epilepsy, developmental delay, autistic features, hypotonia, 
orthopaedic abnormalities and ataxia (Bozarth et al., 2018; Rodan 
et al., 2021). Strikingly, electrophysiological gain-  (GOF) and loss- 
of- function (LOF) variants as well as variants in which no effect on 
channel function were described. Truncating variants were only 
sparsely associated with seizures (Rodan et al., 2021).

Variants in CACNA1D, encoding CaV1.3, have been associated 
with combined cardiac and inner ear phenotypes. Biallelic LOF vari-
ants in this gene have been found in a family with sinuatrial node 
dysfunction and deafness (Baig et al., 2011). In line with this, KO 
mice for CACNA1D exhibit hearing loss and bradycardia (Platzer 
et al., 2000). The evidence for seizure disorders in patients carrying 
missense variants in CACNA1D is based on a few case reports: Scholl 
et al. identified two individuals who suffered from aldosterone- 
producing adenomas and primary aldosteronism that were associ-
ated with somatic and germline CACNA1D missense variants with 
congenital hyperaldosteronism, arterial hypertonia, intellectual 
disability and focal to bilateral tonic– clonic seizures. One patient 

showed a movement disorder with spastic quadriplegia and atheto-
sis. Both patients carried de novo variants showing a GOF in elec-
trophysiological recordings (Scholl et al., 2013). A report in Russia 
claims to have found a third similar case carrying a missense vari-
ant (Semenova et al., 2018). Pingerra et al. describe a patient with 
developmental delay, autism spectrum disorder and focal epilepsy 
carrying a missense variant in the S6 segment of domain I in CaV1.3 
that results in an electrophysiological mixed effect with a tendency 
to a GOF of the channel (Pinggera et al., 2017). Another study by 
Rinné et al. describes a family in which the p.Arg930His variant in 
CACNA1D cosegregated with a phenotypic variable syndrome of 
sinus node dysfunction, focal epilepsy and attention deficit hyper-
activity disorder (Rinné et al., 2022). However, the interpretation of 
this variant is intensely debated in genetic databases such as ClinVar, 
as its frequency is 1:4000 in gnomAD and the functional electro-
physiological characterisation produced a heterogenic isoform- 
specific GOF or LOF effect. The very same variant was also reported 
in a patient with primary aldosteronism, seizures and neurological 
abnormalities in a study on monogenic hypertension in China (Bao 

TABLE 1 Overview of genes, phenotypes and specific therapeutic options for calcium channelopathies.

Gene Protein Phenotype Specifictreatment

CACNA1C CaV1.2 GOF: Timothy syndrome (OMIM #601005)
GOF&LOF: Neurodevelopmental disorder with hypotonia, 

language delay and skeletal defects with or without seizures 
(OMIM #620029)

GOF: Verapamil+ (Gershon et al., 2014) 
Dyhydropyridines?

CACNA1D CaV1.3 GOF: Primary aldosteronism, seizures and neurologic 
abnormalities (OMIM #615474)

LOF: Sinoatrial node dysfunction and deafness (OMIM #614896)

GOF: Verapamil?
Dyhydropyridines?

CACNA1A CaV2.1 GOF: Migraine, familial hemiplegic, 1 (OMIM #141500), 
alternating hemiplegia of childhood, DEE42 (OMIM #617106)

LOF: Episodic ataxia Type 2 (OMIM #108500), DEE42 with 
absence seizures (OMIM #617106)

CAG-Expansion: Spinocerebellar ataxia type 6 (OMIM #183086)

Mixedcohort: TPM+ (Le Roux 
et al., 2021), LEV+ (Le Roux 
et al., 2021), LTG+ (Byers et al., 2016; 
Le Roux et al., 2021), VPA+ (Le Roux 
et al., 2021)

LOF(Episodicataxia): 4- AP++ 
(Muth et al., 2021; Strupp, Kalla, 
et al., 2011), acetazolamide++ (Muth 
et al., 2021)

CACNA1B CaV2.2 Bi-allelicLOF: Neurodevelopmental disorder with seizures and 
nonepileptic hyperkinetic movements (OMIM #618497)

CACNA1E CaV2.3 GOF: DEE 69 (OMIM #618285), Developmental delay and 
regression without epilepsy (Royer- Bertrand et al., 2021)

LOF: DEE 69 (OMIM #618285)

GOF: TPM+ (Helbig, Lauerer, et al., 2018)

CACNA1G CaV3.1 GOF&mixed: Epilepsy, developmental delay, cerebellar atrophy
LOF&Mixed: SCA42 (OMIM #616795/#618087)

GOF: ESL?, ESX?, ZNS?

CACNA1I CaV3.3 GOF: Neurodevelopmental disorder with speech impairment and 
with or without seizures (OMIM #620114)

Mixedeffects: Familial hemiplegic migraine
LOF: Schizophrenia

GOF: ESX+ (El Ghaleb et al., 2021), ESL?, 
ZNS?

CACNA2D1 α2δ1 Bi-allelicLOF/MonoallelicLOF(debated): Developmental and 
epileptic encephalopathy 110 (OMIM #620149)

Avoid GPB & PGB?

CACNA2D2 α2δ2 Bi-allelicLOF: Cerebellar atrophy with seizures and variable 
developmental delay (OMIM #618501)

Avoid GPB & PGB?

Abbreviations: 4- AP, 4- aminopyridine; ESL, eslicarbazepine acetate; ESX, ethosuximide; GBP, gabapentin; LEV, levetiracetam; LTG, lamotrigine; 
PGB, pregabalin; TPM, topiramate; ZNS, Zonisamide; ?, theoretical consideration, based on in vitro data; +, evidence from single case reports or case 
series; ++, evidence from randomized clinical trials.
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4  |    LAUERER and LERCHE

et al., 2020). Taken together, there is limited evidence for an epilepsy 
phenotype in patients carrying missense GOF variants in CACNA1D. 
Based on the few cases reported in the literature, CACNA1D should 
be treated as a candidate gene for epilepsy, especially in the context 
of additional developmental delay.

Even though both genes are expressed in the brain and heart 
and are associated with cardiac arrhythmia, we could not find evi-
dence in the literature for an involvement of CACNA1C or CACNA1D 
in sudden unexpected death in epilepsy patients (SUDEP), although 
CACNA1C variants had been described in cases of sudden unex-
pected death in youth (Narula et al., 2015). This is not surprising as 
the currently preferred pathophysiological explanation of SUDEP 
is a central dysregulation leading to secondary cardiac arrhythmia 
based on the results of the MORTEMUS study (Ryvlin et al., 2013).

CaV1.2 and CaV1.3 channels differ in their electrophysiolog-
ical properties (Helton et al., 2005; Koschak et al., 2001; Xu & 
Lipscombe, 2001). The dissection of the individual function of chan-
nels in the brain is difficult and given the overlapping expression 
patterns and the lack of specific blockers for the subunits can only 
be obtained by KO models, which on the other hand can imply com-
pensatory mechanisms (Jurkovičová- Tarabová et al., 2012). CaV1.2 
is involved in long- term potentiation and spatial memory formation 
in the hippocampus and modulates the spiking behaviour of neu-
rons (Lacinova et al., 2008; Moosmang et al., 2005). Knockout of 
CaV1.3 enhances excitability in principal neurons but reduces long- 
term potentiation in the basal complex of the amygdala (McKinney 
et al., 2009). Several studies focused on the function of L- type 
channels in the nigrostriatal network. Here, both channels can mod-
ulate the spiking and pacemaking behaviour of neurons (Guzman 
et al., 2009; Olson et al., 2005).

Pharmacologically, L- type calcium channels are targeted by 
phenylalkylamines, such as verapamil, benzothiazepines, such as 
diltiazem, dihydropyridines, such as nimodipine and to some extent 
by flunarizine (Hockerman et al., 2000; Tytgat et al., 1988; Xu & 
Lipscombe, 2001). In a patient carrying the p.Gly402Ser GOF variant 
in CACNA1C in a mosaic pattern, suffering from Timothy syndrome 
with prominent psychiatric disease and without a history of seizures, 
verapamil has been used as a treatment with some effect on the 
cardiac but not on the neuropsychiatric phenotype of the patient 
(Gershon et al., 2014). Diyhydropyridines, which are commonly used 
drugs to treat high blood pressure, have been proposed as a pos-
sible treatment option for GOF variants in CACNA1C (Marcantoni 
et al., 2020). However, at the time of submitting this article, we could 
not find any case description in which dihydropyridines were used to 
treat patients suffering from GOF variants in CACNA1C or CACNA1D. 
It is noteworthy, that the dihydropyridine nimodipine reduces hip-
pocampal firing in an in vitro model of febrile seizures in wild type 
and CaV1.3 KO mice and reduces epileptic activity in induced fe-
brile seizures in vivo indicating an important role of CaV1.2 in the 
generation of febrile seizures (Radzicki et al., 2013). In neurons that 
were differentiated from induced pluripotent stem cells of patients 
with Timothy syndrome due to the p.G406R variant in CACNA1C, 
treatment with nimodipine could rescue the elevated calcium in 

neurons but not the upregulation of tyrosine hydroxylase, resulting 
in increased catecholamine production in the patient cell line (Paşca 
et al., 2011). On the other hand, it is noteworthy that dihydropyri-
dines do not cause CNS side effects in patients treated for arterial 
hypertonia. Furthermore, vascularly expressed alternatively spliced 
isoforms are more sensitive to dihydropyridines and their use- 
dependent manner of action makes the blockage of L- type channels 
by dihydropyridines in the brain less effective (Helton et al., 2005; 
Welling et al., 1997). Thus, arterial hypotension with an increased 
risk of syncope would be expected to be a limiting factor in treating 
patients before a neurological treatment effect is expected. On the 
contrary, the sensitivity for mutated channels to blocking agents can 
change in the mutated channel, as can be seen in the p.Val401Leu 
variant in CACNA1D leading to autism spectrum disorder and epi-
lepsy, in which the channel's affinity for israpidine, another dihydro-
pyridine with an extensively higher affinity to CaV1.3 than CaV1.2, 
is increased in vitro in comparison to the wild type channel (Koschak 
et al., 2001; Pinggera et al., 2017). Thus, a drug that would not have 
an extensive effect in healthy individuals might have an effect in pa-
tients carrying GOF variants.

To our knowledge, activators of the channel are not available for clin-
ical use. The applicability of commonly used activators in vitro, such as 
BayK8644, is limited due to a dystonic CNS- mediated effect (Bourson 
et al., 1989). A targeted therapy for patients carrying LOF variants is thus 
currently not available (see also review in Zamponi et al., 2015).

3  |  P/Q-TYPECALCIUMCHANNELS
(CaV2 .1)

CACNA1A encodes for the P/Q- type channel CaV2.1, which is ubiq-
uitously distributed in the brain with high expression in cerebellar 
and hippocampal neurons (Ludwig et al., 1997; Schlick et al., 2010; 
Westenbroek et al., 1995). CaV2.1 channels are expressed in both 
inhibitory (Althof et al., 2015; Zaitsev et al., 2007) and excitatory 
cells (Althof et al., 2015).

CAG expansions in this gene lead to spinocerebellar ataxia 
type 6 (Zhuchenko et al., 1997). Missense and nonsense variants in 
CACNA1A have been identified as disease- causing in a spectrum of 
disorders that are often distinct between GOF and LOF variants and 
can in both cases imply an epileptic phenotype and in most cases, 
a cerebellar phenotype: GOF variants have been identified in non- 
epileptic and epileptic paroxysmal disorders such as familial hemiple-
gic migraine type 1 (FHM1) and alternating hemiplegia of childhood 
as well as in patients suffering from an epileptic encephalopathy with 
convulsive seizures often with overlapping phenotypes of the three 
entities (Chan et al., 2008; Ducros et al., 2001; Le Roux et al., 2021; 
Stam et al., 2009; Zangaladze et al., 2010). Patients with a leading 
CACNA1A GOF epileptic encephalopathy show often intractable 
seizures with frequent status epilepticus, developmental delay with 
autistic features, ataxia and hemiplegic attacks (Le Roux et al., 2021).

The electrophysiological consequences of GOF variants in 
CACNA1A have mostly been studied in the context of FHM1, in 
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    | 5LAUERER and LERCHE

which hemiplegic attacks occur due to a cortical spreading de-
polarisation, that causes transient neuronal dysfunction (for re-
view see Pietrobon & Moskowitz, 2014). As an extraordinary 
example, the recurrent p.Ser218Leu missense variant in CACNA1A 
leads to a characteristic phenotype of FHM1 with unprovoked 
seizures and brain oedema after minor head trauma with subse-
quent seizures (Chan et al., 2008; Stam et al., 2009; Zangaladze 
et al., 2010). Homozygous p.Ser218Leu knock- in mice carrying 
this variant show a similar phenotype to humans with recurrent 
spontaneous epileptic seizures and often die after epileptic sei-
zures, possibly caused by spreading depolarisations to the brain-
stem (Loonen et al., 2019; van den Maagdenberg et al., 2010). As 
expected for familial hemiplegic migraine, the threshold for elicit-
ing cortical spreading depression is lower in these mice (van den 
Maagdenberg et al., 2010). Due to the shift of the activation and 
inactivation curves to more hyperpolarised potentials, the basal 
concentration of calcium in neurons is elevated and leads to stron-
ger and more active excitatory synapses and increased short- term 
depression (Di Guilmi et al., 2014).

Monoallelic LOF variants in CACNA1A have been associated with 
an often overlapping disease spectrum of episodic ataxia type 2 
(EA2), non- episodic, chronic ataxia and cerebellar dysfunction, cog-
nitive impairment and ADHD. Whereas the associated epileptic phe-
notype with predominant absence seizures is often milder compared 
to the GOF phenotype, cases of severe DEE have been described 
(Damaj et al., 2015; Imbrici et al., 2004; Jiang et al., 2019; Jouvenceau 
et al., 2001; Le Roux et al., 2021; Rajakulendran et al., 2010; Stendel 
et al., 2020). Furthermore, several missense variants that have not 
been electrophysiologically characterised have been found in pa-
tients with congenital ataxia or EA2 who often also exhibit a seizure 
phenotype (Byers et al., 2016; Gur- Hartman et al., 2021; Travaglini 
et al., 2017). The phenotype in patients carrying LOF variants is in 
many cases strikingly consistent with that of CACNA1A knockout 
(KO) mice which exhibit a prominent ataxia and dystonia and absence 
seizures with behavioural arrest and spike– wave discharges in EEG 
(Jun et al., 1999; Llinas et al., 2007; Song et al., 2004). Other mouse 
models for EA2, such as tottering and leaner, which carry missense 
or splice variants resulting in a LOF of CaV2.1, show a comparable 
phenotype with ataxia, absence and convulsive seizures (Fletcher 
et al., 1996; Jun et al., 1999; Noebels & Sidman, 1979; Wakamori 
et al., 1998).

Absence seizures go along with oscillations in the thalamo- 
cortical network between cortex, inhibitory neurons in the reticular 
thalamic nucleus and thalamo- cortical projection neurons. These 
oscillations can be triggered both in cortex and in thalamus. They 
rely on the rebound burst firing mediated by T- type channels in 
the thalamus and cortex, although these mechanistic details have 
been critically discussed recently (McCafferty et al., 2018; for re-
view and discussion see Huguenard, 2019 and Crunelli et al., 2020). 
The global dysfunction of CaV2.1 function in tottering mice triggers 
a compensatory upregulation of T- type currents, but not the mRNA 
in thalamo- cortical projection neurons, potentially tipping the bal-
ance in the thalamo- cortical loop towards the generation of absence 

seizures (Zhang et al., 2002). Interestingly, the selective knockout 
of CaV2.1 in cortical interneurons is sufficient to generate absence 
and convulsive seizures without eliciting an ataxic or dystonic phe-
notype by disrupting the GABA release from parvalbumin posi-
tive fast- spiking interneurons. This is consistent with the impaired 
feedforward inhibition of thalamic projections to layer IV of the 
cortex in tottering mice mediated by these interneurons (Rossignol 
et al., 2013; Sasaki et al., 2006). Likewise, the isolated disruption of 
CaV2.1 in murine layer VI pyramidal neurons is also sufficient to elicit 
an absence seizure phenotype with compensatory presynaptically 
driven upregulation of T- type currents in thalamic relay and reticular 
neurons (Bomben et al., 2016). In other cell types, the loss of CaV2.1 
is compensated by other calcium channels, especially CaV2.2 chan-
nels, partially preserving their function in the release of neurotrans-
mitters (Cao & Tsien, 2005; Jun et al., 1999; Qian & Noebels, 2000; 
Rossignol et al., 2013). Knockout of CaV2.1 channels in adult mice 
still elicits an absence seizure phenotype indicating that the under-
lying pathophysiology stems from these direct electrophysiological 
changes and is not due to secondary structural defects in network 
architecture (Miao et al., 2020). Crossbreeding tottering mice with 
KCNA1 KO mice, which as well show a seizure phenotype, masks the 
absence seizures in these mice. The same effect could be observed 
when blocking KV1.1 channels with 4- aminopyridine (Glasscock 
et al., 2007).

There are two established treatments in patients with EA2 
carrying LOF variants, the carboanhydrase inhibitor acetazol-
amide and the potassium channel blocker 4- aminopyridine, with 
evidence from randomised clinical trials (Muth et al., 2021; Strupp, 
Kalla, et al., 2011; Strupp, Thurtell, et al., 2011). Topiramate, which 
is also a partial carboanhydrase inhibitor, showed the best effi-
cacy for treating seizures in a mixed cohort of GOF and LOF pa-
tients with CACNA1A- associated epilepsy, whereas Levetiracetam, 
Lamotrigine and Valproate have also been reported as effective 
(Byers et al., 2016; Le Roux et al., 2021). Single cases have been ren-
dered seizure- free by ACTH or pyridoxine (Du et al., 2017; Le Roux 
et al., 2021).

4  | N-TYPECALCIUMCHANNELS(CaV2 .2)

N- type or CaV2.2 channels, encoded by CACNA1B, have been pro-
posed to be potentially involved in genetic generalised epilepsy 
by the Epi25 Collaborative and the Epi4K Consortium (Epi25 
Collaborative, 2021; Epi4K Consortium & Epilepsy Phenome/
Genome Project, 2017). In addition, Gorman et al. described three 
families in which bi- allelic predicted LOF variants due to protein 
truncation or nonsense- mediated decay of CACNA1B led to a devel-
opmental and epileptic encephalopathy with a hyperkinetic move-
ment disorder. Epilepsy often began with epileptic spasms and was 
regularly accompanied by a developmental regression. A majority 
of the patients died at a young age (Gorman et al., 2019). Contrary 
to human cases, CaV2.2 knockout mice display neither seizures 
nor hyperkinetic movement disorder, but the reduced response to 
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6  |    LAUERER and LERCHE

sensory stimuli and pain, hyperaggressive behaviour, altered sleep 
architecture and hyperactive behaviour (Beuckmann et al., 2003; 
Kim et al., 2009; Kim, Jun, et al., 2001). CaV2.2 is widely expressed 
in the nervous system including the cortex, hippocampus and cer-
ebellum (Fujita et al., 1993; Jones et al., 1997; Ludwig et al., 1997; 
Westenbroek et al., 1992). On a subcellular level, CaV2.2 channels 
are expressed in dendrites, as well as presynaptic nerve terminals 
where they mediate neurotransmitter release together with CaV2.1 
(Hirning et al., 1988; Westenbroek et al., 1992). During development, 
the role of CaV2.2 in neurotransmitter release is predominantly 
taken over by CaV2.1 channels, which are located more closely to the 
synaptic release machinery (Iwasaki et al., 2000; Wu et al., 1999).

Due to the nature of a homozygous loss of CACNA1B as a cause 
of disease, it is hard to derive a specific therapy for the disease as 
no functional CaV2.2 channels will be expressed in these patients. 
In the small cohort of Gorman et al., no anti- seizure medication did 
stand out in providing seizure control in the 6 patients described 
(Gorman et al., 2019). Further research needs to be conducted to get 
more insights into the clinical course of disease in these patients and 
successful treatment options.

5  |  R-TYPECALCIUMCHANNELS(CaV2 .3)

CACNA1E encodes the R- type calcium channel CaV2.3, the third 
presynaptic calcium channel in this subgroup. Missense variants in 
this gene have been associated with a complex phenotype including 
largely pharmacoresistant early onset infantile epileptic encepha-
lopathy with severe developmental delay. Helbig et al. reported 
30 patients with de novo missense variants. Additional symptoms 
were congenital contractures with arthrogryposis, perinatal hypo-
tonia and extrapyramidal movement disorders. Three patients with 
variants predicted to be LOF by nonsense- mediated decay had a 
milder phenotype (Helbig, Lauerer, et al., 2018). A second cohort 
of patients with developmental delay and no epileptic phenotype 
was described later (Royer- Bertrand et al., 2021). A wide pheno-
typic spectrum can be observed in patients with the same variant, 
implicating other confounding factors, as has been argued before 
for monogenic epilepsies in general (Campbell et al., 2022). Seizures 
in CACNA1E encephalopathy are often pharmacoresistant, however, 
Topiramate, an antiseizure drug (ASM) acting on CaV2.3 channels, 
has been identified as an effective treatment option in some pa-
tients (Helbig, Lauerer, et al., 2018).

Interestingly, most disease- causing missense variants in 
CACNA1E cluster are in the distal S6 segment of the channel. This 
mutational hotspot is common in VGCCs, as can be also observed 
in Timothy syndrome with the common variants p.Gly402Ser and 
p.Gly406Arg in CACNA1C, as well as disease- causing variants in the 
T- type channel genes CACNA1G and CACNA1I. These variants in the 
activation gate of the channels usually result in a GOF effect by fa-
cilitating channel activation and prolonging the time course of inac-
tivation (Chemin et al., 2018; El Ghaleb et al., 2021; Helbig, Lauerer, 
et al., 2018; Splawski et al., 2004, 2005).

CaV2.3 is expressed ubiquitously in the brain in both excitatory 
and inhibitory cells as well as astrocytes (D'Ascenzo et al., 2004; 
Ludwig et al., 1997; Parajuli et al., 2012; Soong et al., 1993; 
Weiergräber et al., 2006, 2008; Williams et al., 1994). On a subcel-
lular level, the channel has been detected pre-  and postsynaptically 
(Breustedt et al., 2003; Dietrich et al., 2003; Parajuli et al., 2012). 
However, caution should be exercised when interpreting studies on 
the localisation of CaV2.3 as the R- type current does not fully corre-
spond to CaV2.3 channels and the commonly used regimes of block-
ing this current with SNX- 482 or a low concentration of Ni+ ions are 
not fully specific for CaV2.3 channels (Bourinet et al., 2001; Kimm 
& Bean, 2014; Lee et al., 1999; Tottene et al., 2000). Before the 
description of CACNA1E as an epilepsy gene in humans, a possible 
involvement of CaV2.3 in the pathophysiology of absence seizures 
had been discussed based on experiments in KO mice (Weiergräber 
et al., 2008; Zaman et al., 2011). KO mice show reduced susceptibil-
ity to seizure induction with pentylenetetrazol and kainate, but not 
with 4- aminopyridine (Weiergräber et al., 2006, 2007). Furthermore, 
KO animals showed reduced excitotoxicity in the hippocampus after 
seizure induction with kainate (Weiergräber et al., 2007). R- type cal-
cium channels are involved in long- term potentiation and rhythmic 
firing of neurons (Breustedt et al., 2003; Dietrich et al., 2003; Zaman 
et al., 2011). CaV2.3 is also a target of CDKL5, a kinase in which 
variants lead to a similar although not completely identical pheno-
type as in CACNA1E- GOF- DEE patients. Interestingly, the lack of 
phosphorylation due to a defect in CDKL5 leads to a GOF in CaV2.3 
(Sampedro- Castañeda et al., 2023).

6  |  T-TYPECALCIUMCHANNELS(CaV3.x)

T- type VGCCs form low- voltage activated channels that conduct 
transient calcium currents which are essential for rebound burst 
firing in a subunit- specific manner (Huguenard & Prince, 1992; 
Klöckner et al., 1999; McRory et al., 2001). T- type channels have 
been accounted to be crucial for the generation of absence sei-
zures in the network of GABAergic neurons in the reticular tha-
lamic nucleus, excitatory thalamo- cortical neurons of the thalamic 
relay nucleus and the cortex (for review see Crunelli et al., 2020). 
They are essential in the neuronal switch from tonic to burst firing, 
which is elicited by Ca2+- mediated low threshold spikes, an impor-
tant prerequisite for oscillations in the thalamo- cortical circuitry 
between somatosensory cortex and the thalamus (Huguenard & 
Prince, 1992; Kim, Song, et al., 2001). It was recently proposed 
by experiments in freely moving animals, that T- type channels are 
involved in the absence seizure generation in the cortex and re-
ticular thalamic nucleus, but not in thalamo- cortical relay neurons 
(McCafferty et al., 2018). Thus, the distinct expression patterns 
of the three T- type channel subunits determine their importance 
in the generation of absence seizures in this network as is out-
lined below. Although many studies do not distinguish between 
the three different T- type channels, the expression pattern is dis-
tinct. In rats, CaV3.1 channels are strongly expressed in the lateral 
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    | 7LAUERER and LERCHE

geniculate nucleus, especially in thalamo- cortical projection neu-
rons, but only weakly in the reticular thalamic nucleus, whereas 
CaV3.2 is strongly expressed in the reticular thalamic nucleus and 
not in the corpus geniculatum laterale and intralaminar nuclei of 
the thalamus. CaV3.3 is expressed throughout the whole thalamus 
(Broicher et al., 2007, 2008). Whereas CaV3.1 is the predominant 
T- type calcium channel in the cortex, hippocampal pyramidal 
neurons express all three channels (Talley et al., 1999; Zhang 
et al., 2002).

All three T- type VGCCs have been associated with epilepsy 
with a different extent of evidence with either GOF or LOF mech-
anisms, as outlined in detail below. Besides the well- described 
pathophysiological role of T- type channels in absence seizures, 
they are targets of licenced anti- seizure medications, which can 
help as guidance to preferentially use these drugs in patients 
carrying GOF variants and avoid them in patients carrying LOF 
variants. Ethosuximide, a pan- T- type channel blocker, is a first- line 
treatment for absence seizures (Gomora et al., 2001) and zonis-
amide, which is used in Japan to treat genetic generalised epilep-
sies, also blocks all three T- type channels with a preference for 
CaV3.2 beside voltage- gated Na+ channels (Matar et al., 2009; 
Suzuki et al., 1992). Another combined blocker of Na+ and T- type 
Ca2+ channels is eslicarbazepine acetate, which has been shown 
to prevent epileptogenesis in a mouse model of temporal lobe ep-
ilepsy (Doeser et al., 2014). Valproic acid, the first line treatment 
in generalised genetic epilepsy, shows a minor block of T- type 
channels (Kelly et al., 1990; Todorovic & Lingle, 1998). Recently, 
it was also shown that stiripentol, another drug, mainly used in 
Dravet syndrome, also acts on T- type calcium channels beside its 
GABAergic mechanism of action (Riban et al., 2022). Other drugs 
blocking T- type channels include pimozide, flunarizine, phytocan-
nabinoids and amiloride (Santi et al., 2002; Tang et al., 1988; for 
review see also Mirlohi et al., 2022; Zamponi et al., 2015). Another 
substance, not approved for the use in humans, is Z944, a specif-
ically designed T- type channel blocker that also modifies T- type 
channel expression and shows promising results in mouse mod-
els of temporal lobe epilepsy (Casillas- Espinosa et al., 2015, 2019; 
Tringham et al., 2012).

6.1  |  CACNA1G(CaV3.1)

Missense variants in CACNA1G have been identified in patients 
with DEE with varying severe electroclinical phenotypes with a 
wide variety of seizure types. Epilepsy and developmental delay 
are often accompanied by cerebral and/or cerebellar atrophy 
and digital and facial dysmorphisms (Berecki et al., 2020; Chemin 
et al., 2018; Kunii et al., 2020). Functional testing of these missense 
variants in heterologous expression systems frequently revealed 
mixed GOF and LOF effects, for example, shifting the voltage 
dependence of both activation and inactivation to more hyper-
polarised potentials (Berecki et al., 2020; Chemin et al., 2018; 
Kunii et al., 2020). In silico modelling pointed to a resulting GOF in 

neurons for some of these variants (Chemin et al., 2018). Another 
study detected missense variants in families with juvenile myo-
clonic epilepsy that did not change the gating parameters of the 
channel significantly, and have not been entered as pathogenic 
into ClinVar by other submitters since then, rendering this asso-
ciation rather questionable (Singh et al., 2007).

On the broader spectrum, missense variants in CACNA1G have 
also been described in cerebellar phenotypes: LOF variants cause 
autosomal dominant cerebellar ataxia without seizures (Coutelier 
et al., 2015), and mixed GOF and LOF variants have been de-
scribed in spinocerebellar ataxia type 42 without seizures (Morino 
et al., 2015). Furthermore, patients with microdeletions of the 
17q21.33 locus, that involve CACNA1G among other genes, show 
developmental delay and in some cases cerebral atrophy, whereas 
an epileptic phenotype has not been reported (Bardai et al., 2016; 
Harbuz et al., 2013; Jewell et al., 2017; Preiksaitiene et al., 2012). 
This may suggest that a mono- allelic LOF in CACNA1G is not suffi-
cient to elicit an epileptic phenotype. However, dominant- negative 
effects of missense variants leading to the complete disruption of 
functional CaV3.1 channels cannot be excluded.

Cacna1g KO mice are less prone to the induction of spike- wave 
discharges by the application of γ- butyrolactone and baclofen but 
not to the induction of cortically induced absence seizures with bi-
cuculine or convulsive seizures with 4- aminopyridine (Kim, Song, 
et al., 2001). The knockout of Cana1g in mice abolishes rebound 
bursts in thalamo- cortical projection neurons within the ventrobasal 
complex which were deemed to be essential in generating spike– 
wave discharges in absence seizures (Kim, Song, et al., 2001). More 
recent studies could show that selective blockage of T- type cur-
rents in this region of the thalamus, in which CaV3.1 is primarily 
expressed, does not abolish absence seizures (Crunelli et al., 2020; 
McCafferty et al., 2018). On the contrary, crossbreeding Cacna1g 
KO mice with Cacna1a KO mice abolishes the absence seizures that 
are usually observed upon Cacna1a KO, indicating the importance 
of CaV3.1 T- type currents in the generation of absence seizures (Jun 
et al., 1999; Llinas et al., 2007; Song et al., 2004). Similarly, KO of 
Cacna1g reduces the phenotypic severity in mouse models of Scn1a 
and Scn2a encephalopathies and kainate- induced hippocampal sei-
zures (Calhoun et al., 2016, 2017; Kim, 2015).

Taken together, there are hints for a GOF mechanism of CaV3.1 
in CACNA1G variant carriers with reported epilepsy, and that a LOF 
is protective against absence seizures, although the mechanistic 
details remain uncertain. However, the heterogenicity of data may 
complicate the interpretation of functional effects derived from het-
erologous expression systems for the clinical geneticist and should 
be followed by in vivo or in silico verification.

6.2  |  CACNA1H(CaV3.2)

CACNA1H has been proposed as an epilepsy gene first in 2003 
when a study in the Chinese Han population found inherited but 
not co- segregating missense variants in the gene in patients with 
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8  |    LAUERER and LERCHE

childhood absence epilepsy (Chen et al., 2003). Various other re-
ports have observed inherited heterozygous or compound heterozy-
gous missense variants in CACNA1H in patients with an extensive 
variability of phenotypes including the whole phenotypic spectrum 
of genetic generalised epilepsy as well as febrile seizures, epilepsy 
with myoclonic– atonic seizures and temporal lobe epilepsy, which 
co- segregated with an epilepsy phenotype only in few families 
(Becker et al., 2017; Chourasia et al., 2019; Heron et al., 2007; Liang 
et al., 2006; Vitko, 2005). Many of the detected missense variants 
alter the gating mechanisms of CaV3.2 channels and lead to either 
GOF or LOF in the channel in vitro with a tendency of more GOF vari-
ants with mostly small effect sizes, but also functional effects on neu-
ronal firing (Becker et al., 2017; Eckle et al., 2014; Heron et al., 2007; 
Khosravani et al., 2005; Peloquin et al., 2006; Vitko, 2005). In con-
trast, missense variants in CACNA1H have repeatedly not been 
identified as enriched in other large cohorts of patients with epi-
lepsy (Chioza et al., 2006; Epi4K Consortium et al., 2013; Epi4K 
Consortium & Epilepsy Phenome/Genome Project, 2017; Heyne 
et al., 2019) and the existence of a monogenetic syndrome caused 
by missense variants in this gene is now strongly debated, leading to 
the suggestion to exclude the gene from gene panels in clinical test-
ing (Calhoun et al., 2020; Helbig, Riggs, et al., 2018).

Interestingly, a homozygous missense variant leading to an 
amino acid substitution in the linker between domains III and IV 
of CaV3.2 has been described to co- segregate with seizure count 
and seizure activity in the Genetic Absence Epilepsy in Rats from 
Strasbourg (GAERS) model (Powell et al., 2009). However, even 
though the variant showed a splice- variant specific GOF with accel-
erated recovery from inactivation when heterologously expressed, 
animals not carrying this variant still showed seizures, indicating a 
polygenic basis of disease in this model (Powell et al., 2009). This 
is underlined by follow- up experiments of the same group showing 
that the introduction of this variant into congenic animals derived 
from a non- epileptic control strain by crossbreeding could not elicit 
a seizure phenotype but modified the seizure phenotype in GAERS 
animals facilitating absence seizures (Casillas- Espinosa et al., 2023). 
Epileptogenesis in the hippocampus is largely prevented in Cacna1h 
KO mice, which do not show neuronal cell loss after the induction 
of status epilepticus with pilocarpine and are less likely to develop 
chronic epilepsy (Becker et al., 2008). This fits the population sta-
tistics in humans that indicate that CACNA1H is opposing to other 
voltage- gated ion channels tolerant to LOF (Calhoun et al., 2020). 
Also, an additional KO of Cacna1h did not alter the seizure suscepti-
bility and survival in a crossbred Scn1a KO mouse line to a clinically 
significant amount (Calhoun et al., 2020).

Taken together, there is currently no clear evidence that missense 
variants in CACNA1H contribute to epilepsy in affected individuals, 
but experiments in GAERS suggest that a homozygous GOF variant 
facilitates absence seizures in this model. Therefore, the current 
state of research cannot fully exclude CACNA1H to be a candidate 
gene to contribute to the polygenic burden in generalised genetic 
epilepsies, especially with missense variants that lead to an electro-
physiological GOF in the channel. However, a monogenetic cause 

of disease should not be proclaimed (Becker et al., 2017; Calhoun 
et al., 2020; Powell et al., 2009). In addition, the KO of CACNA1H 
and inhibitors of this channel can prevent epileptogenesis in the hip-
pocampus so that blockers of CaV3.2 channels may be a promising 
anti- epileptogenic future therapeutic option (Becker et al., 2008; 
Doeser et al., 2014).

6.3  |  CACNA1I(CaV3.3)

Recently, four different de novo missense variants in CACNA1I, which 
encodes the CaV3.3 channel have been described in patients with 
a neurodevelopmental syndrome of varying severity and epilepsy. 
In three patients, de novo variants led to a severe phenotype with 
global developmental delay, hypotonia, cortical blindness and epi-
lepsy during the first 2 years of life. Another variant co- segregated 
in a family with cognitive impairment of affected individuals, and 
one individual of which developed seizures with 58 years of age. 
However, in this patient, no MRI but only a CT scan was obtained 
to rule out other causes of structural epilepsy, which renders an as-
sociation to the genetic findings questionable. This p.I860M variant 
showed the weakest electrophysiological alterations of all variants 
tested, but was affecting the same amino acid as the p.I860N vari-
ant identified in more severe cases. All variants induced a GOF by 
shifting the activation curve and the window current to more hyper-
polarised potentials, prolonging inactivation, and in some variants 
also deactivation. The shift in window current leads to an increase in 
firing and to a slow oscillation mode when expressed in chromaffin 
cells. Consistent with a GOF effect, in one severely affected individ-
ual, ethosuximide improved seizure control (El Ghaleb et al., 2021). 
Beyond epilepsy, variants in CACNA1I with a mixed effect in heter-
ologous expression systems have been identified in familial hemiple-
gic migraine, whereas LOF variants were detected in schizophrenia 
(Andrade et al., 2016; Maksemous et al., 2022).

CACNA1I thus appears to be a promising epilepsy gene in indi-
viduals carrying de novo GOF variants given the remarkable work by 
El Ghaleb et al. (2021). Further case descriptions are necessary to 
establish reproducibility for this gene in epilepsy.

7  | AUXILIARYSUBUNITS

7.1  |  CACNB4

CACNB4 encodes the β4 subunit of the calcium channel complex. 
The first description of CACNB4 variants in epilepsy in humans 
was in 1999, when a group of researchers screened patients with 
familial epilepsy and ataxia for variants in this gene. This was in-
fluenced by the mouse model lethargic, which carries a bi- allelic 
LOF Cacnb4 variant and exhibits an absence seizure phenotype 
and ataxia (Burgess et al., 1997). The authors identified a mis-
sense and a nonsense variant, leading to an early stop codon that 
co- segregated in the three affected families with disease (Escayg 
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et al., 2000). However, the identified p.Cys104Phe missense vari-
ant did not lead to changes in electrophysiological recordings and 
has meanwhile been found in gnomAD in 117 cases, whereas the 
p.Arg482* variant leading to a distal stop codon has not been an-
notated in ClinVar for a second time but in gnomAD in one healthy 
individual. Another study identified a heterozygous frameshift 
variant in CACNB4 in 3 individuals with epilepsy, predicted to lead 
to nonsense- mediated decay. However, this study lacks further 
clinical data and information on segregation for the participants, 
indicating questionable results (Naseer et al., 2022). Protein- 
truncating variants in CACNB4 are not enriched in epilepsy cases 
in the Epi25 cohort and the gnomAD constraint metrics indicate 
that the gene is not intolerant to loss of function with a probability 
of being loss- of- function intolerant (pLI) score of 0.03, and the ob-
served/expected (oe/e) constraint score of 0.28 (confidence inter-
val 0.17– 0.49) (Chen et al., 2022; Epi25 Collaborative et al., 2023; 
Lek et al., 2016). This renders disease association unlikely for all 
variants described.

De Bagneaux et al. suggested the homozygous p.Leu125Pro 
missense variant in CACNB4 to be disease- causing in two siblings 
born of consanguineous parents with severe developmental delay, 
hypotonia, athetoid– dystonic movements, cerebellar atrophy and 
focal tonic seizures. The mutated protein failed to be trafficked in 
presynaptic terminals and axon hillocks of transfected hippocampal 
neurons and activity- dependent nuclear targeting was inhibited and 
led to a LOF with decreased current density and altered inactivation 
kinetics when co- expressed with CaV2.1 in a heterologous expres-
sion system. Furthermore, the mutant proteins did not bind to other 
protein interaction partners, such as the serin- threoine kinase TNIK 
in contrast to the wild- type protein (Coste de Bagneaux et al., 2020).

Before the description of biallelic variants, CACNB4 had been 
flagged by the ClinGen consortium to be a disputed epilepsy gene 
as there was a lack of replication after the initial report by Helbig, 
Riggs, et al. (2018). Furthermore, ultrarare variants in this gene were 
not enriched in a cohort of patients with neurodevelopmental disor-
ders with epilepsy (Heyne et al., 2019).

Taken together, there is very limited evidence for a monogenetic 
epilepsy syndrome involving CACNB4 given the lack of reproducibil-
ity and the few cases reported, especially with mono- allelic variants. 
The overlap of severe phenotypes in the bi- allelic LOF of CACNB4 in 
mouse and humans points towards a possible recessively inherited 
disease but should be backed up by additional case descriptions.

7.2  |  CACNA2D1

CACNA2D1 encodes the α2δ1 subunit of VGCCs. Recently, Dahimene 
et al. reported two patients with biallelic CACNA2D1 variants result-
ing in biallelic LOF of the α2δ1 subunit that led to a DEE phenotype 
with cortical visual impairment, severe developmental delay, hypo-
tonia, a movement disorder with spasticity, choreiform movements 
and orofacial dyskinesia, facial dysmorphism, cerebral atrophy with 
an emphasis on corpus callosum and an epilepsy syndrome with 

generalised absence or hemiclonic seizures. CACNA2D1 variants 
in these patients were either predicted to be LOF by nonsense- 
mediated decay due to an early frameshift variant or failed to ful-
fil their physiological function of enhancing calcium currents and 
channel expression when co- expressed with CaV2.2 (Dahimene 
et al., 2022).

A mono- allelic predicted LOF variant has been reported in a pa-
tient with infantile epileptic spasms (formerly known as West syn-
drome) without developmental delay (Hino- Fukuyo et al., 2015). 
Patients with a microdeletion of the 7q21.11 locus involving the 
CACNA2D1 gene exhibit developmental delay or reduced cogni-
tive functions and in many but not all cases epilepsy. However, this 
recurrently deleted sequence contains several candidate genes 
expressed in CNS, so a clear association with CACNA2D1 remains 
unclear (Mazzaschi et al., 2013; Mefford et al., 2011; Siddique 
et al., 2017; Vergult et al., 2015). Another patient with treatment- 
resistant epilepsy, intellectual disability and polymicrogyria carried a 
balanced reciprocal translocation 46,X,t(X;7)(p10;q21.2) potentially 
disrupting the CACNA2D1 gene (Vergult et al., 2015). Furthermore, 
a monoallelic intronic variant predicted to result in a splicing defect 
was reported in a patient with craniofacial dysmorphism, language 
delay and epilepsy (Valentino et al., 2021). However, Dahimene et al. 
raise a serious doubt regarding the pathogenicity of monoallelic LOF 
variants with regard to epilepsy as the previously reported patients 
show phenotypic heterogenicity. They furthermore argue that gno-
mAD and LOVD list various likely LOF variants. Contradicting the 
authors' theory is that the expected frequency of LOF variants in 
CACNA2D1 in gnomAD is lower than expected, resulting in a prob-
ability of being loss- of- function intolerant (pLI) score of 1 and the 
observed/expected (oe/e) constraint score of 0.15 (confidence inter-
val 0.09– 0.24) (Chen et al., 2022; Lek et al., 2016). Also, phenotypic 
heterogeneity is not uncommon in channelopathies even within 
patients carrying the same variants (Martins Custodio et al., 2023; 
Royer- Bertrand et al., 2021). On the other hand, Cacna2d1 KO mice 
exhibit a mild cardiac phenotype and sensory deficits whereas a 
seizure phenotype has not been reported (Fuller- Bicer et al., 2009; 
Patel et al., 2013).

Further supporting the pathogenicity of an LOF of CACNA2D1, 
two patients, seropositive for antibodies in serum and CSF directed 
against the α2δ1 subunit exhibited autoimmune encephalitis with 
psychiatric alteration and seizures. Interestingly, in vitro electro-
physiological recordings led to the conclusion that these antibodies 
result in a loss of protein function downstream of enhancing calcium 
currents, reducing the frequency of miniature excitatory and inhib-
itory post- synaptic currents in an autaptic hippocampal neuronal 
culture model, but not reducing calcium currents at the soma (Lee 
et al., 2021).

The α2δ1 subunit has a primary expression pattern in cortex and 
hippocampus (Hobom et al., 2000). A LOF in this protein is thus ex-
pected to result in a functional loss in calcium currents in these cells, 
potentially mimicking the pathomechanisms of epileptic encephalop-
athy with a LOF in co- expressed VGCC α- subunits, most likely CaV2.1 
and CaV2.3 (Hobom et al., 2000). A compensatory upregulation of 
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other α2δ- subunits could not be observed in Cacna2d1 KO mice 
(Fuller- Bicer et al., 2009; Patel et al., 2013). Beyond their function as 
calcium channel subunits, α2δ- subunits are essential for establishing 
the physiological architecture of glutamatergic synapses via their 
function as thrombospondin receptors and interact with NMDA re-
ceptors (Chen et al., 2018; Eroglu et al., 2009; Schöpf et al., 2021).

Taken together, a LOF in CACNA2D1 might lead to an epileptic 
phenotype although the evidence that a monogenetic LOF is suf-
ficient to lead to a clinical phenotype remains open. Interestingly, a 
mouse model overexpressing Cacna2d1 also shows a seizure pheno-
type with the behavioural arrest that responds to the T- type calcium 
channel blocker ethosuximide, making GOF missense variants inter-
esting candidates for causing epilepsy (Faria et al., 2017).

α2δ- subunits are targeted by gabapentin and pregabalin, anti- 
seizure medications that nowadays are more often used to treat 
neuropathic pain (Bian et al., 2006; Gee et al., 1996). Even though 
no clinical evidence is present, we suggest therefore to avoid these 
drugs in patients carrying LOF variants in genes encoding α2δ- 
subunits as the additional blockage of these proteins may result in 
clinical worsening as can be seen in other channelopathies resulting 
from an LOF such as SCN1A- associated Dravet syndrome and SCN2A 
LOF- DEE (Brunklaus et al., 2012; Wolff et al., 2017).

7.3  |  CACNA2D2

CACNA2D2 encodes for the auxiliary subunit α2δ2, which enhances 
divalent cation currents through VGCCs (Brodbeck et al., 2002; 
Hobom et al., 2000). Long before the discovery of disease associa-
tion in man, spontaneous variants in Cacna2d2 had been associated 
with epilepsy and ataxia in mutated mouse lines: Truncating variants 
in Cacna2d2 have been found in the absence seizure mouse models 
ducky and ducky2j (Barclay et al., 2001; Brodbeck et al., 2002). In the 
entla mouse line, a 38 kb duplication in Cacna2d2 results in an elec-
trophysiological loss of function of the protein (Brill et al., 2004). In 
all three mouse lines, homozygous animals exhibit ataxia, paroxysmal 
dyskinesia and seizures with spike– wave activity in EEG recordings, 
which is consistent with the phenotype in homozygous knockout 
animals (Barclay et al., 2001; Brill et al., 2004; Ivanov et al., 2004). 
Homozygous loss of Cacna2d2 results in a reduced current of 
CaV2.1 and other VGCCs, which explains the similar phenotype 
to CACNA1A LOF models such as tottering (Brodbeck et al., 2002; 
Fletcher et al., 1996; Jun et al., 1999; Noebels & Sidman, 1979; 
Wakamori et al., 1998). In addition, Cacna2d2 dysfunction can alter 
neuronal morphology, as mice homozygous for the truncating ducky 
allele show reduced dendritic arbours of Purkinje cells (Brodbeck 
et al., 2002).

Consistent with the phenotypic similarities in the mouse models, 
the expression of α2δ2 is widely overlapping with the expression of 
CaV2.1 and CaV2.3 with a hotspot in the Purkinje cell layer of the 
cerebellum, which corresponds with the cerebellar phenotype in 
mice and humans (Barclay et al., 2001; Brodbeck et al., 2002; Butler 
et al., 2018; Edvardson et al., 2013; Hobom et al., 2000; Pippucci 

et al., 2013; Punetha et al., 2019; Valence et al., 2019). α2δ2 is fur-
thermore expressed in the thalamus, hypothalamus, the olfactory 
bulb, the habenulae, the superior and inferior colliculus, the striatum 
and the septal nuclei with a minor expression in the cortex. There 
is opposing data on the expression in the hippocampus (Barclay 
et al., 2001; Hobom et al., 2000).

Years after the first description of these mouse phenotypes, 
homozygous and compound- heterozygous predicted LOF or mis-
sense variants have been described in patients with a DEE pheno-
type with multifocal tonic, atonic, tonic– clonic and absence seizures 
refractory to anti- seizure medications. Patients regularly showed 
dyskinesia, cerebellar atrophy, ataxia and atypical eye movements 
consistent with the murine phenotype (Butler et al., 2018; Edvardson 
et al., 2013; Pippucci et al., 2013; Punetha et al., 2019). The monoge-
netic origin of the disease was debated in the first place, as the first 
two reported families additionally carried rare homozygous variants 
in the CELSR3 gene (Edvardson et al., 2013; Pippucci et al., 2013) and 
in the third family a common heterozygous variant in CELSR3 was 
present (Butler et al., 2018). Later on, additional patients with homo-
zygous variants in CACNA2D1, but not CELSR3, with similar (Punetha 
et al., 2019) and milder phenotypes, namely congenital ataxia with 
one febrile seizure, have been described (Valence et al., 2019). It is 
noteworthy that missense variants in CELSR3, which encodes the 
cadherin egf lag seven- pass g- type receptor 3, a protein involved in 
axonal guidance, have also been associated with febrile seizures in a 
Chinese cohort (Li et al., 2022).

Taken together, bi- allelic LOF variants in CACNA2D2 seem to be 
sufficient to explain the phenotype of the reported patients given 
the concordance with the murine phenotypes in terms of ataxia and 
absence seizures. The experimental in vitro evidence of a reduction 
of calcium channel currents by the co- expression of the patho-
logical p.L1040P CACNA2D2 allele found in patients with CaV1.2 
and CaV2.2 in Xenopus laevis oocytes and the reduction of calcium 
currents in Purkinje cells in the ducky and ducky2j mouse models 
supports this conclusion, with the constraint that not all missense 
variants found in humans have been functionally characterised 
(Brodbeck et al., 2002; Donato et al., 2006; Edvardson et al., 2013). 
Nevertheless, it cannot be fully excluded that variants in CELSR3 
serve as modifying factors of disease, given its role in axonal guid-
ance and neuronal development. Regarding a targeted therapy, we 
propose to avoid drugs that act on α2δ- subunits in these patients, 
as with LOF variants in CACNA2D1, although to our knowledge no 
clinical evidence is present for this suggestion.

8  |  SUMMARY

All voltage- gated calcium channel α- subunits and some of their aux-
iliary subunits have been associated with epilepsy in the past with 
often strikingly overlapping phenotypes in murine models. While 
the disease association has been reproduced in some of the genes, 
over time some of these associations have been loosened, such as 
for CACNA1H and CACNB4. Further research is needed to extend 
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our knowledge on pathophysiology in all VGCC- associated syn-
dromes to derive specific therapies for the often severely disabled 
patients.
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